Hum Hain HindustaniThe Global Millennium Classmawilmedsanasmarkmawdesignsilmeps

the3h | glomc00 | ilmeps | mawdesigns | anasmark | ilmeds | read | contact |

Topic: architecture | authors | design education | design entrepreneurship | engineering & technology | fashion & textile | furniture & interior | general | graphic | human resources | industrial & product | landscape | people | reviews | university research | web
Date: 2013 | 2014 | 2015 | jan'16 | feb'16 | mar'16 | apr'16 | may'16 | jun'16 | jul'16 | aug'16 | sep'16 | oct'16 | nov'16 | dec'16 | jan'17 | feb'17 | mar'17 | apr'17 | may'17 | jun'17 | jul'17 | aug'17 | sep'17 | oct'17 | nov'17 | dec'17 | jan'18 | feb'18 | mar'18 | apr'18 | may'18 | jun'18 | jul'18 | aug'18 | sep'18 | oct'18 | nov'18

September 2016

Mohammad Anas Wahaj | 17 sep 2016

Researchers from Staford University [Po-Chun Hsu, Alex Y. Song, Peter B. Catrysse, Chong Liu, Yucan Peng, Jin Xie, Shanhui Fan, Yi Cui] have developed a low-cost, plastic-based textile that, when woven into clothing, has the ability to keep the body cool more efficiently as compared to the natural or synthetic fabrics that are used today. The research was published in journal 'Science' titled, 'Radiative human body cooling by nanoporous polyethylene textile'. According to Prof. Yi Cui of Materials Science and Engineering, 'If you can cool the person rather than the building where they work or live, that will save energy.' The new material cools by letting perspiration evaporate through it, as fabrics normally do. But the other most innovative characteristic of the material's cooling mechanism is that it allows heat that the body emits as infrared radiation to pass through the plastic textile. Prof. Shanhui Fan of Electrical Engineering says, '40-60% of our body heat is dissipated as infrared radiation when we are sitting in an office. But until now there has been little or no research on designing the thermal radiation characteristics of textiles.' Researchers engineered the cooling material by blending nanotechnology photonics and chemistry to give polyethylene, the material used as kitchen wrap, a number of characteristics desirable in clothing material. It allows thermal radiation, air and water vapor to pass right through, and it is opaque to visible light. Prof. Cui says, 'If you want to make a textile, you have to be able to make huge volumes inexpensively.' According to Prof. Fan, 'This research opens up new avenues of inquiry to cool or heat things, passively, without the use of outside energy, by tuning materials to dissipate or trap infrared radiation.' Read on...

Stanford News: Stanford engineers develop a plastic clothing material that cools the skin
Author: Tom Abate

Mohammad Anas Wahaj | 03 sep 2016

Multidisciplinary team of researchers lead by Prof. Amin Salehi-Khojin from University of Illinois at Chicago (UIC) have engineered a process through a solar cell to mimic plants' ability to convert carbon dioxide into fuel, a way to decrease the amounts of harmful gas in the atmosphere and produce clean energy. According to Prof. Salehi-Khojin, 'The artificial leaf essentially recycles carbon dioxide. And it's powered entirely by the sun, mimicking the real photosynthesis process. Real leaves use the energy from the sun and convert carbon dioxide to sugar. In the artificial leaf that we built, we use the sun and we convert CO2 to (synthetic gas), which can be converted to any hydrocarbon, like gasoline.' Describing the process Prof. Salehi-Khojin said, 'The energy of the sun rearranges the chemical bonds of the carbon dioxide. So the sun's energy is being stored in the form of chemical bonds, which can be burned as fuel...Scientists around the world have been studying carbon reduction, as this type of reaction is called, for years.' Prof. Nathan Lewis of California Institute of Technology, who has been studying solar fuels and artificial photosynthesis for more than 40 years, says, 'UIC's development is only a small piece of an eventual solar fuel product that can be widely implemented. There's a lot of steps that need to occur to envision how these things would translate into a commercializable system, but it's a step for building a piece of a full system that may be useful.' Prof. Michael R. Wasielewski of Northwestern University comments, 'UIC's development could push renewable energy technology forward.' The research, 'Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid', was recently published in journal 'Science'. UIC News Center website ( provides the following information about co-authors and collaborators of this research - Amin Salehi-Khojin, Mohammad Asadi, Kibum Kim, Aditya Venkata Addepalli, Pedram Abbasi, Poya Yasaei, Amirhossein Behranginia, Bijandra Kumar and Jeremiah Abiade of UIC's Mechanical and Industrial Engineering Department, who performed the electrochemical experiments and prepared the catalyst; Robert F. Klie and Patrick Phillips of UIC's Physics Department, who performed electron microscopy and spectroscopy experiments; Larry A. Curtiss, Cong Liu and Peter Zapol of Argonne National Laboratory, who did Density Functional Theory calculations; Richard Haasch of the University of Illinois at Urbana-Champaign, who did ultraviolet photoelectron spectroscopy; José M. Cerrato of the University of New Mexico, who did elemental analysis. Read on...

Chicago Tribune: UIC researchers develop artificial leaf that turns CO2 into fuel
Author: Ally Marotti

the3h | glomc00 | ilmeps | mawdesigns | anasmark | ilmeds | read | contact

©2018, ilmeps
disclaimer & privacy